Memristor Empowered Ultra-fast Baseband Processing

Kaibin Huang

Dept. of Electrical & Electronic Engineering The University of Hong Kong Hong Kong

Acknowledgement: Parts of presentation were created by Zhongrui Wang and Qunsong Zeng

6G — Fusion of Communication and Computing

Revolution in Computing — "Living on the Edge"

About 150 trillion gigabytes of data will need

analysis by 2025 (Forbes)

Machine Learning

Artificial Intelligence

From Shannon 1.0 to Edge Al

Shannon 1.0 — Rate Maximization

"Given a constraint on distortion,

transmit as much data as possible"

<u>Shannon 2.0 – Fast Edge Intelligence</u>

"Given a constraint on learning/decision accuracy,

distill or use intelligence as fast as possible"

G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, "Towards an Intelligent Edge: Wireless Communication Meets Machine Learning", IEEE Commun. Magazine, 2020.

6G — Shannon Meets Turing

Alan Turing (Father of AI)

6G Sub-millisecond Latency

Martin Cooper with 1G Phone

Question A: Is analog communication dead?

Over-the-Air Computing

G. Zhu, Y. Wang, and K. Huang, "Broadband Analog Aggregation for Low-Latency Federated Edge Learning," IEEE TWC, 2020.

Turning Channel Noise into Accelerator

Z. Zhang, G. Zhu, R. Wang, V. K. N. Lau, and K. Huang, "Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis," TWC 2022

Noise Tolerance of Edge Inference

0.6 Class 1 Class 2 100 ** 0.4 80 0.2 Margin Accuracy (%) 0.0 60 * $(\mathbf{x})_2$ -0.2 \star 40 \star -0.4 -0.6 20 -0.8 0 Additive Noise Variance -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 $(\mathbf{x})_1$

Margin of Classifier

Question B - Is analog computing dead?

Analog Computer	Digital Computer	
Specialized for one problem	Flexible due to Boolean algebra	
Small errors can accumulate	Resilient to noise	
Cannot get same answer twice	Reproducible results	
?	Advent of solid-state electronics allows VLSI	

Alan Turing used analog computer to crack Nazi's enigma code in WWII

Cerebras Wafer-size chip - 1.2 trillion transistors and 400,000 AI cores.

Outline

I. Analog Neuromorphic Computing

II. Memristor Empowered Ultra-fast Baseband

The digital "brain"

Are digital chips approaching the performance of the brain?

[1] NVidia [2] S. Furber, J. Neural Eng. 13, 051001 (2016) [3] Horowitz, ISSCC 2014

Why Neuromorphic Computing

 10^{10} transistors vs. 10^{15} synapse 10^{-12} vs. 10^{-15} J per operation

Von Neumann Bottleneck

Semiconductor device fabrication

MOSFET scaling (process nodes) 10 µm – 1971 6 μm – 1974 **3 μm** – 1977 1.5 µm – 1981 $1 \,\mu m - 1984$ 800 nm - 1987 600 nm - 1990 350 nm - 1993 250 nm - 1996 180 nm – 1999 130 nm – 2001 90 nm - 2003 65 nm - 2005 45 nm - 2007 32 nm - 2009 22 nm - 2012 14 nm – 2014 10 nm – 2016 7 nm – 2018 5 nm - 2020 3 nm - 2022 Future 2 nm ~ 2024

Approaching Transistor Scaling Limit

Possible Solution — In-Memory Computing

Z. Wang et al., Nat. Rev. Mater. doi:10.1038/s41578-019-0159-3

Why memristors? Stack-ability and Scalability

P. Lin et al., Nat. Nanotechnol. 14, 35-39

P. Lin et al., Nat. Electron., in press

Outline

I. Analog Neuromorphic Computing

- Zhongrui Wang
- Qunsong Zeng
- Jiawei Liu

Q. Zeng, J. Liu, J. Lan, Y. Gong, Z. Wang, Y. Li, and K. Huang, "Realizing Ultra-Fast and Energy-Efficient Baseband Processing Using Analogue Switching Memory", [Online] http://arxiv.org/abs/2205.03561.

In-Memory Empowered Ultra-Fast 6G Communication

Fabrication: Resistive Random-Access Memory

MIMO-OFDM Transceiver

- Key modules of MIMO-OFDM transceiver:
 - OFDM: Orthogonal frequency-division multiplexing
 - IDFT: inverse discrete Fourier transform (Tx)
 - DFT: discrete Fourier transform (Rx)
 - MIMO: Multiple-input multiple-output
 - MIMO detection: recover signal by channel inversion (Rx)
 - Channel estimation: obtain channel state information (Rx)

Design: DFT Module

Highlight:

- DFT operation in **one-step** (i.e., O(1) complexity).
- Traditional FFT algorithms complexity $O(N_c \log N_c)$.

Validation: OFDM System

• Hardware implementation of OFDM system:

DFT matrix written into differential RRAM arrays

Real mapped DFT matrix (µS)

Matrix Inversion Using RRAM Crossbar

Sun, Zhong, et al., "One-step Regression and Classification with Cross-Point Resistive Memory Arrays", Science advances, 2020.

Design: MIMO Detection Module

🗳 Highlight:

- MIMO detection in one-step (i.e., O(1) complexity).
- Conventional computational complexity is $O(N^3)$.

L-MMSE detection:

$$\hat{\mathbf{x}} = \left(\mathbf{H}^{\mathsf{H}}\mathbf{H} + \frac{1}{\mathsf{SNR}}\mathbf{I}\right)^{-1}\mathbf{H}^{\mathsf{H}}\mathbf{y}$$

• SNR
$$\propto (g_1g_2)^{-1}$$

 L-MMSE ⇒ ZF by turning off the transistors

Validation: MIMO System

• Hardware implementation of MIMO system:

Performance Evaluation: Complete System

Para

► 2

Digital processor (benchmark)

Verification is necessary!

rs for OFDM

for MIMO

ut-veri

verification

RRAM-based baseband processing

Channel SNR = 30dB

System Performance Improvements

<u>100-Time Faster and More Energy Efficient</u>			
	Latency (ms)	Energy (mJ)	
Qualcomm Snapdragon X65	<10	N/A	
Domain Adaptive Processor [1]	28.56	27.71	
Combined FFT [2] + MIMO [3]	23.16	22.98	
Our RRAM-based processor	0.2322	0.01015	

[1] K.-Y. Chen, *et al.*, "A 507 GMACs/J 256-Core Domain Adaptive Systolic-Array-Processor for Wireless Communication and Linear-Algebra Kernels in 12nm FINFET", *Proc. VLSI Techn. Circuits*, 2022.

[2] S. Liu, *et al.*, "A high-flexible low-latency memory-based FFT processor for 4G, WLAN, and future 5G", *IEEE Trans. VLSI Syst.*, vol. 27 no. 3, pp. 511-523, 2018.

[3] W. Tang, *et al.* "A 2.4-mm² 130-mW MMSE-Nonbinary LDPC Iterative Detector Decoder for 4×4 256-QAM MIMO in 65-nm CMOS." *IEEE J. Solid-State Circuits*, vol. 54, no. 7, pp. 2070-2080, 2019.

System Performance Improvements

- Latency Several microseconds (µs)
- Energy Several micro-Jules (µJ)
- Performance Approach digital baseband

Memristor Models:

- Ferroelectric field-effect transistor (FeFET)
- Ferroelectric tunnel junction (FTJ)

Thank You

