
Online DNN for Massive MIMO

Channel Estimation

Vincent LAU

Chair Professor

Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology

Outline

01

02

03
Extension for MU Massive MIMO Channel

Estimation and Limited Feedback

Online DNN for Point-to-Point Massive

MIMO Channel Estimation

Massive MIMO Channel Estimation

04 Conclusions

Massive MIMO

Channel Estimation

• Consider a massive MIMO system:

• Rx has 𝑁 antennas

• Tx has 𝑀 antennas

• For CE, the Tx transmits sequences of known pilot symbols
𝐒 ∈ ℂ𝑀×𝐿 of length 𝐿 to the Rx, the received signal in matrix
form is

𝐘 = 𝐇𝐒 + 𝐍,

• It is important to estimate the CSI 𝐇 ∈ ℂ𝑁×𝑀 to leverage the
benefits of massive MIMO, and various MIMO techniques
rely on accurate CE:

• Design precoding & decoding matrices to exploit spatial
multiplexing gain

• Design equalization for data detection

• Power & interference management

• …

• CSIT will also be needed for enhanced performance (e.g., for
precoding), in which case the CSI needs to be fed back to the

Tx.

Massive MIMO Signal Model

Tx pilot sequences
𝐒 = 𝐬 1 , 𝐬 2 , … , 𝐬 𝐿

𝐇

𝐬 1

𝐬 2

…

𝐬 𝐿

…

Tx Rx

Rx pilot measurements
𝐘 = 𝐲 1 , 𝐲 2 , … , 𝐲 𝐿 .

Channel Estimation
Algorithm

𝐘

 𝐇
Feedback 𝐇

 𝐇

CSIRCSIT

stacking over time:

𝐘 = 𝐇𝐒 + 𝐍

Fig 1: Point-to-Point MIMO with Explicit CSIT Feedback.

Pilot Observations Pilot Symbols

 If no prior information on the channel

• Least square (LS) formulation
 𝐇LS = arg min𝐇 𝐘 − 𝐇𝐒 𝐹

2

• LS has closed-form expression
 𝐇LS = 𝐘𝐒𝐻 𝐒𝐒𝐻 −1

• Problem: 1) pilot number 𝐿 needs to be larger than channel dimension 𝑀, induces large pilot overhead for massive MIMO 2) high

complexity due to matrix inversion

 If given statistics (covariance) of the channel, i.e., let 𝐲 = vec 𝐲 , 𝐡 = vec 𝐡 , and we know 𝐑 = 𝔼 𝐡𝐡𝐻 :

• Linear minimize mean square error (LMMSE) can be formulated as

 𝐡MMSE = arg min𝐖,𝐛 𝔼𝑝 𝐡|𝐲
 𝐡 − 𝐡

𝐻 𝐡 − 𝐡

 𝐡 = 𝐖𝐲 + 𝐛

• LMMSE has closed-form expression [1] provided 𝐒 satisfies 𝐒𝐒𝑯 = 𝜌𝐿𝐈𝑀:
 𝐡MMSE = 𝐑−1σ𝑛

2 + ρ𝑀𝐈𝑁𝑀
−1 𝐒𝑇 ⊗ 𝐈𝑁 𝐲.

• Problems: 1) hard to obtain accurate covariance and 2) high complexity due to large matrix inversion

Traditional Channel Estimation

To reduce pilot overheads, we must exploit the intrinsic structures of H

[1] A. Assalini, E. Dall'Anese and S. Pupolin, "Linear MMSE MIMO Channel Estimation with Imperfect Channel Covariance Information," 2009 IEEE International Conference on Communications, 2009.

• The channel is sparse under certain basis due to limited

scattering in the propagation environment.

• By exploiting hidden sparsity structures in the MIMO

channel, we can estimate 𝐇 with reduced pilot

overhead (𝐿 < 𝑀).

• For example, consider the channel vector 𝐡 ∈ ℂ𝑁

between one Tx antenna and the Rx antennas, then 𝐡
has a sparse representation in the angular domain

𝐡 = 𝐅𝐱

• 𝐅 ∈ ℂ𝑁×𝑁 is the steering matrix (determined by array

geometry)

• 𝐱 is the sparse angular domain channel

• Different sparsity structures can be exploited to reduce

pilot overhead

Compressive Sensing-Based CE

Fig. 2: Channel sparsity induced by limited
scattering in the propagation environment.

Cluster 1
Cluster 2

Cluster 3

Random Sparsity

• The channel is sparse due to limited

propagation paths between Tx and Rx

• We just know 𝐱 is sparse and the support is

random without special structure

Different Sparsity Structures

Fig 3: Random sparse channel 𝐱.

Nonzero Supports

Clustered Sparsity

• The channel supports are clustered in subsets

of overlapping candidate supports

• Induced by angular domain spreading of

propagation paths

Fig 4: Clustered sparse channel 𝐱 generated from the
COST2100 channel model.

Common Sparsity for MU-MIMO

• The channels of different users are usually

correlated as they tend to share some

common local scatterers at the BS

• Channels of different users usually share

some partial common supports.

Different Sparsity Structures

Fig 5: Histogram of ratio of common sparsity level .

The histogram in Fig. 5 is generated for COST2100 channel
model
• 2.6-GHz NLoS semi-urban environments with closely

spaced users
• 20 users randomly clustered in a 5m x 5m square
• A common support is identified when it is a support for all

the 20 users
Common sparsity exists in the MU-MIMO channel, and
typical ratio of common sparsity level ranges in 30% ~ 50%

Optimization-Based Approach

• Random Sparsity: L1-norm regularized LS (standard lasso)

min
𝐱

1

2
𝐲 − 𝐀𝐱 2

2 + λ 𝐱 1

with 𝐀 = 𝐒𝐅 being the overall measurement matrix

• Clustered Sparsity: Use block sparse lifting transform 𝐱 =
𝐋𝐳 and 𝑙2,1-norm regularization for clustered sparsity [2]:

min
𝐳

1

2
𝐲 − 𝐀𝐋𝐳 2

2 + λ 𝐳 2,1

• Common Sparsity: given statistical common support

information in the MU channels (e.g., probability of being a

common support), use weighted L1-norm regularization [3]:

min
𝑥

1

2
𝑦 − 𝐴𝑥 2

2 +

𝑛=1

𝑁

𝑤𝑛 𝑥𝑛

smaller probability larger 𝑤𝑛 larger sparsifying penalty

Exploiting Different Sparsity Structures

Bayesian Approach

• Random Sparsity: impose an i.i.d. Laplacian Prior on the random
sparse channel:

𝑝 𝐱 =

𝑛=1

𝑁
1

2λ
exp −

𝑥𝑛

λ

• Clustered Sparsity: Impose an HMM prior on the clustered sparse
channel 𝐱 [4]:

𝑝 𝐬 = 𝑝 𝑠1

𝑛=1

𝑁−1

𝑝 𝑠𝑛+1 𝑠𝑛

𝑝 𝐱 𝐬 =
𝑛=1

𝑁

𝑠𝑛 ⋅ 𝒞𝒩 𝑥𝑛; 0, σ𝑛
2 + 1 − 𝑠𝑛 δ 𝑥𝑛

• Common Sparsity: impose a spherically-contoured radial
exponential distribution (SRED) on the common-sparse 𝐱 [5]:

𝑝 𝐱 ∼

𝑔=1

𝐺

λ𝐵 exp −λ 𝐱𝑔 2

with 𝐱𝑔 being the g-th group of common sparse 𝐱

[2] A. Liu, V. K. N. Lau and W. Dai, "Exploiting Burst-Sparsity in Massive MIMO With Partial Channel Support Information," in IEEE Transactions on Wireless Communications, Nov. 2016.
[3] L. Lian, A. Liu and V. K. N. Lau, "Weighted LASSO for Sparse Recovery With Statistical Prior Support Information," in IEEE Transactions on Signal Processing, 15 March15, 2018.
[4] A. Liu, L. Lian, V. K. N. Lau and X. Yuan, "Downlink Channel Estimation in Multiuser Massive MIMO With Hidden Markovian Sparsity," in IEEE Transactions on Signal Processing, 15 Sept.15, 2018.
[5] X. Zheng, A. Liu and V. Lau, "Joint Channel and Location Estimation of Massive MIMO System With Phase Noise," in IEEE Transactions on Signal Processing, 2020.

Channel Estimation

Traditional

Methods

Compressive

Sensing-Based

LS MMSE

non-sparse
channel

sparse channel

no prior channel
statistics
available

Optimization-

based

Bayesian-

based

Standard

LASSO

Burst

LASSO

Weighted

LASSO
Laplace

Prior

HMM

Prior

SRED

Prior
… …

Exploiting Different Sparsity Structures

For CS-base solution, the pilot overhead can be
significantly reduced by exploiting sparsity structure.

For example, standard LASSO algorithm only requires
the pilot length grows with [6]

𝐿~𝑝 ⋅ 𝑙𝑜𝑔 𝑁 ≪ 𝑁

i.e., 𝐿 grows linearly with sparsity level, and only
logarithmically with channel dimension.

Problems with CS-based solution:

1. No closed-form solution

2. Requires an iterative algorithm to find solution

3. Iterative algorithms usually have high
computational complexity, thus difficult to be
applied for massive MIMO CE in real-time (within
a TTI < 1ms for 5G).

[6] Wright, John, and Yi Ma. High-dimensional data analysis with low-dimensional models: Principles, computation, and applications. Cambridge University Press, 2022.

Compressive Sensing v.s. Deep Learning

DNN-Based Channel Estimator

𝐘

𝛀

 𝐇𝛀

Signal Model Inverse Model

CS-based CE: the OMP algorithm

𝐘 𝐇

Initialize 𝐫0 = 𝐲, Λ0 = ∅.
for 𝑡 = 1,2,… do

𝜆𝑡 = argmax𝑘∉Λ𝑡−1
𝛏𝑘

𝐻𝐫𝑡−1

Λ𝑡 = Λ𝑡−1 ∪ 𝜆𝑡

𝐱𝑡 = argmin𝐱 𝚵Λ𝑡
𝐱 − 𝐲

2

𝐫𝑡 = 𝐲 − 𝚵𝐱𝑡

end
 𝐇 = 𝐅𝐗𝑡

vectorized signal 𝐲 = 𝚵𝐱 + 𝐧 with 𝐲, 𝐱 = vec 𝐘 , vec 𝐗 , 𝚵 = 𝐒𝑯⨂𝐅

R
e

p
lace

d
 b

y D
N

N

Fast inferencing: forward propagation of a

trained DNN is very fast, suitable for real-time

channel inferencing

300x ~ 700x speed up than the

iterative OMP algorithm.

Table 6: Estimation and Computational Performance of DNN Compared with

Iterative OMP and PGD Algorithms for a 64 x 64 MIMO.

Traditional Offline DNN-Based CE

• Traditional DL-based channel estimators are trained offline based on MSE loss, training is modeled as an optimization problem over all the

trainable weights

• The MSE loss needs truth H in labeled data pairs 𝐘, 𝐇 for supervised training. But in practice, true H are difficult to obtain, and are generated

offline according to certain channel model. The training and CE are divided into two stages:

• Offline Training Stage: tune the DNN weights offline based on MSE loss and channel labels

• Online Inferencing Stage: after offline training, fix the weights for CE for online deployment

• Problem: the offline trained DNN cannot adapt its weights to the channel model in actual scenario.

Labeled data from offline
simulation model

𝐘 1 , 𝐇 1 , … , 𝐘 𝐵 , 𝐇 𝐵

DNN with random

initialization

𝛀offline
0

Offline

training

(thousands of

iterations) 𝛀offline

Frame 1 Frame 2 Frame 𝑗

𝐘 1 𝐘 2

…

𝐘 𝑗

…

𝛀offline 𝛀offline
𝛀offline

… …

fix weights &

apply online

 𝐇 1 𝐇 2

…
 𝐇 𝑗

…

real-time received pilot measurements

Step 1: Offline Training Step2: Online inferencing

Frame 1, 2, 3, …

𝛀offline DNN model with weights

𝛀offline

𝐘 𝑗
Received pilot

measurements at

the 𝑗-th frame

offline training data path

online channel inferencing data path

Frame 3

𝐘 3

𝛀offline

 𝐇 3

The weights are fixed and cannot adapt to

the time-varying channel model

Desire for Online DNN

Can we have an online training scheme that

1. learns the channel model online, while
2. enjoying fast channel inferencing

at the same time?

Online DNN for Point-to-Point
Massive MIMO Channel Estimation

X. Zheng and V. K. N. Lau, "Online Deep Neural Networks for MmWave Massive MIMO

Channel Estimation With Arbitrary Array Geometry," in IEEE Transactions on Signal

Processing, vol. 69, pp. 2010-2025, 2021.

X. Zheng and V. K. N. Lau, "Simultaneous Learning and Inferencing of DNN-Based

mmWave Massive MIMO Channel Estimation in IoT Systems With Unknown Nonlinear

Distortion," in IEEE Internet of Things Journal, vol. 9, no. 1, pp. 783-799, 1 Jan.1, 2022.

Online DNN-Based CE

• In order to enable online training, we need an online loss function that (i) does not need true H, (ii) channel model

free and (iii) measures the error with the true H. Formally, we define an online loss function as the following:

1) exempts the training from the need for labeled channel data ad the
underlying channel model, making online training possible

2) guarantees that the minimizer, as an inverse mapping of the loss
function, can be approximated by the DNN

3) guarantees that when the DNN is trained to minimize the loss
function, the output will be driven close to the true channel for large
signal-to-noise ratio (SNR)

• Define the mapping

• The input to the DNN is . The output is denoted by

• are the learnable weights in an 𝐿-layer DNN

• is the estimated channel matrix

• Training of the DNN can be modeled as an optimization problem

Online Training Formulation

𝐘, 𝐒 = 𝛉

Online Loss vs. Offline Loss

Online Loss Function

ℒonline
 𝐇𝛀; 𝛉 , 𝐘, 𝐒 = 𝛉

1. Does not need true channel labels 𝐇, nor

any prior knowledge about the channel

model or antenna geometry.

2. Training is based on real-time received

measurements 𝐘 only, which contains

information about the actual channel model.

3. Training can be implemented online where

the training data comes in a streaming

mode. The weights can adapt to the time-

varying channel model while generating

channel estimation.

Offline Loss Function

ℒoffline = 𝐇𝛀 − 𝐇
𝐹

2

1. Need paired-labels 𝐘, 𝐇 for supervised

training.

2. Labels generated offline according to some

channel model & antenna geometry, which

may differ from the actual scenario.

3. Training is implemented offline. Then the

weights are fixed for online inferencing,

during which the DNN cannot tracking the

changing channel model.

Example Online Loss Functions

For general “non-sparse” channel matrix 𝐇, we
propose the least square online loss function:

Clearly, it satisfies the
1. online requirement: it does not need true

𝐇 as training labels and does not depend
on any channel model nor antenna
geometry

2. regularity requirement: it is continuous in
𝐘 and 𝐒.

3. The consistency requirement is satisfied by
the lemma on the right side.

Least Square online loss function still

requires pilot length > channel dimension.

We can exploit channel sparsity in the

online loss design for reduced pilot

overhead.

E.g. 1: LS Online Loss

Example Online Loss Functions

For sparse channels, we propose the nuclear-norm
regularized online loss function:

• 𝐫 is some M-dim linear & noisy measurement of H
under a linear mapping 𝐴 𝐇

• 𝐇 ∗ is the nuclear norm, well-known for imposing
rank-sparsity.

Clearly, the 1)online requirement and the 2)regularity
requirement are satisfied.

E.g. 2: Nuclear-Norm Based Online Loss

To satisfy the 3) consistency requirement, linear

mapping 𝐴 should satisfy rank-RIP, i.e., ∀𝐇 with

rank(𝐇)≤𝑑, ∃𝛿𝑑 with 0 < 𝛿𝑑< 0, s.t.

The rank-RIP can be satisfied (w.h.p.) by subspace

sampling on 𝐲 𝑡 , i.e., at channel use 𝑡:

The combining matrices 𝐅 𝑡 ∈ ℂ𝑁×𝑀/𝐿 and pilots 𝐬 𝑡
are generated randomly [7] according to

where 𝜂𝑛,𝑚
𝑡

and 𝜉𝑘
𝑡

are uniformly distributed in [0, 2𝜋).

With rank-RIP satisfied, we have the following Theorem

for its consistency requirement.

(1)

[7] W. Zhang, et al. "Leveraging the Restricted Isometry Property: Improved Low-Rank Subspace
Decomposition for Hybrid Millimeter-Wave Systems," in IEEE Transactions on Communications, Nov. 2018.

Online Training Algorithm

Online Learning: The online training

algorithm will update the DNN weights on-

the-fly whenever a pilot measurement is
received in a frame

Simultaneous Inferencing: the DNN will

output the CE based on its current weights
simultaneously

Training can be implemented on-the-fly based on real-time received pilot measurements,
where the training data comes in a streaming mode.

𝝐-Analysis of Online DNN-Based CE

• The theorem states that given a legitimate

online loss function, there exists a “large

enough” DNN, such that its output will

approximate the true channel with

arbitrary accuracy.

• The 𝝐 -analysis above gives an error

bound between the DNN output (with

bounded layer) and the truth channel

•
𝐶

𝜌/𝜎𝑛
2 is the error induced by system

noise, which can be arbitrarily small

for large enough SNR

• 𝝐 is the DNN approximation error,

which can be arbitrarily small for DNN

with large enough width

Sketch of proof:

1. Constrain the DNN input Y in some compact set 𝒴 w.h.p.

2. With Regularity Reqrm., prove that the inverse mapping

is a continuous mapping on 𝒴. [The Maximum Theory].

3. Bound the error between DNN output and the inverse mapping by a small

approximation error 𝝐. [Universal Approximation Theorem]

4. With Consistency Reqrm., bound the error between the DNN output and the true

channel using the triangle inequality.

Online Training v.s Offline Training

…
Frame 1 Frame 2 Frame 3 Frame 𝑗

𝐘 1 𝐘 2

…
𝐘 3 𝐘 𝑗

real-time received pilot measurements

Frame 1, 2, 3, …

…

𝛀 𝟏

 𝐇 1

one step

update𝛀 𝟎

Random

initialization

𝛀 𝟐

 𝐇 2

one step

update 𝛀 𝟑

 𝐇 3

one step

update 𝛀 𝒋

 𝐇 𝑗

one step

update
… …

… …

𝛀 𝒋
DNN model with

weights 𝛀 𝒋 at

the 𝑗-th frame

𝐘 𝑗
Received pilot

measurements at

the 𝑗-th frame
online training data path

online channel inferencing data path

𝐘 1 𝐘 2 𝐘 3
𝐘 𝑗

Labeled data from offline
simulation model

𝐘 1 , 𝐇 1 , … , 𝐘 𝐵 , 𝐇 𝐵

DNN with random

initialization

𝛀offline
0

Offline

training

(thousands

of iterations)
𝛀offline

Frame 1 Frame 2 Frame 𝑗

𝐘 1 𝐘 2
…

𝐘 𝑗
…

𝛀offline 𝛀offline 𝛀offline
… …

fix weights &

apply online

 𝐇 1 𝐇 2 … 𝐇 𝑗 …

real-time received pilot measurements

Step1: Offline Training Step2: Online inferencing

Frame 1, 2, 3, …

𝛀offline DNN model with

weights 𝛀offline

𝐘 𝑗 Received pilot

measurements at

the 𝑗-th frame

offline training data path

online channel inferencing data path

Frame 3

𝐘 3

𝛀offline

 𝐇 3

Offline DNN:

Separate offline training and

online training stage, with

weights fixed during online

inferencing.

Online DNN:

Simultaneous online training

and online inferencing. The

DNN weights are continuously

updated on-the-fly to track the

time-varying channel model.

Computational Complexity

Table 7: Complexity and Computational Performance of DNN Compared with Iterative

Algorithms for a 64 x 10 MIMO.

 For clarity, the computational complexity is

computed for a MIMO with 𝑁𝑟 × 𝑁𝑟 MIMO. 𝐿
is the number of layers in the DNN and each

layer has Θ 𝑁𝑟
2 neurons. 𝜅 is the number of

iterations for iterative algorithms.

 For online DNN channel inferencing, the main

computational burden is just matrix-vector

multiplication during forward propagation,

which has very low complexity.

One step of channel inferencing is more than

1000x faster than Burst LASSO algorithm,

and 50x faster than OMP-based algorithm.

 The fast inferencing enables real-time CE for

massive MIMO.

Algorithm CPU time (in ms)

Online DNN

Inferencing

One step channel

inferencing
0.299

Burst LASSO
Burst LASSO on

one sample
1248

GOMP
GOMP on one

sample
16.323

MMSE -
MMSE on one

sample
12.561

Algorithm
Complexity

per

Overall

complexity

CPU time of different algorithms

Θ 𝑁𝑟
 Θ 𝐿𝑁𝑟

Θ 𝐿 𝑁𝑟
 Θ 𝜅𝐿 𝑁𝑟

Θ 3𝑁𝑟
 Θ 𝜅 3𝑁𝑟

Θ 𝑁𝑟

MMSE

online DNN

offline DNN

Simulation: Comparison to Baselines

Default Simulation Setup:

• N=64, M=10 antennas, pilot length = 8, transmit power 𝜌=1 with varying noise
power.

• Channel model uses 3GPP SCM TR 25.996 for an urban macro propagation
environment with P=2 clusters of scatters, each cluster produces 20 significant
sub-paths with an angular spread of 8°.

• DNN structure: fully connected NN with 2 hidden layers, each with 240 neurons

• Online training scheme: 8000 steps of weight updates (i.e., 8000 pilot
measurements) at SNR = 30 dB .

Fig. 8: CE NMSE versus SNR compared with baselines evaluated on
3GPP TR 25.996 SCM channel model.

 MMSE does not perform well due to insufficient pilots

 Online DNN NMSE reaches that of offline DNN at high SNR when

there is no model mismatch

 We will see the offline DNN will be prone to various model mismatch

problems.

Tx

angular spread of
8°

20 sub-paths

scattering
cluster 1

scattering
cluster 2

scattering
cluster P

Rx

offline DNN, trained on 40-paths but
applied to 60-paths channel MMSE, uses 40-paths covariance but

applied to 60-paths channel

GOMP, assumes 40-paths but applied to
60-paths channel

MMSE, uses 40-paths covariance
and applied to 40-paths channel

online DNN, applied to
60-paths channel

online DNN, applied to
40-paths channel

GOMP, assumes 40-paths and
applied to 40-paths channel

offline DNN, trained on 40-paths and applied to 40-paths channel

Robustness to
Channel Model Mismatches

Fig. 9: CE NMSE versus SNR for different propagation environments.

 Baselines:

 NMSE uses 40-paths covariance

 GOMP assumes 40-paths channel

model

 Offline DNN trained on 40-paths

channel data

 NMSE of the baselines degrades significantly

as the propagation environment switches

from 40-paths to 60-paths case.

 Online DNN can adapt to such change of

propagation environment.

Robustness to
Antenna Array Geometry

Fig. 10: CE NMSE versus SNR for different antenna geometry.

offline DNN, trained on ULA but applied to RSA

MMSE, uses ULA covariance but applied to RSA

GOMP, assumes ULA but applied to RSA

MMSE, uses ULA covariance and applied to ULA

online DNN, applied to RSA

online DNN, applied to ULA

GOMP, assumes ULA
and applied to ULA

offline DNN, trained on ULA and applied to ULA

 Baselines:

 NMSE uses channel covariance for

MIMO equipped with ULA

 GOMP assumes ULA antenna geometry

 Offline DNN trained on channel data

generated for ULA system

 NMSE of the baselines degrades significantly

as the antenna geometry switches from ULA

to RSA.

 Online DNN can learn the underlying

antenna array geometry based on received

pilot measurements

Tracking Ability

Fig. 11: Sample path of NMSE of CE v.s. weight update step number for
online DNN and offline DNN.

 Offline DNN CE error starts to increase after

4000-th step as the weights cannot adapt to the

change of model induced by the new scatterer

 Online DNN can keep track of the channel

model on-the-fly by adjusting the DNN weights,

it still maintains good CE accuracy despite a

changing propagation environment.

Tx

angular spread of 8°

scattering
cluster 1

 scattering
cluster 2

Rx
new scatterer 3
appears at step 4000

new scatterer 3

The environment is static for the first 4000 steps. A new

scatterer (lorry) starts moving towards the Rx at the 4000-th

step.

The offline DNN weights are fixed after completion of the

training phase at the 4000-th step. But the online DNN is

continuously updating the weight.

Extension to MIMO with Nonlinearity

Massive MIMO system with Nonlinearity:

• One BS with N antennas, one single-antenna user

• For downlink CE, the BS broadcasts pilot sequences 𝐒 ∈ 𝐶𝑀×𝑵 of length M to the UE

• The nonlinear distorted, noise corrupted measurements at the UE is

• 𝐡 ∈ 𝐶𝑁 is the spatial channel to be estimated

• 𝑓𝑟𝑥 ∙ and 𝑓𝑡𝑥 ∙ are the transfer functions of the PA at the BS and LNA the UE, applied elementwisely to the envelope of symbols

• The nonlinear transfer functions are, modeled as a Rapp model with clipping voltage 𝑉 and smoothness factor 𝑝.

Similarly, for online training, we need an

online loss function that satisfies the

three axioms. But we also need to

incorporates the nonlinearity.

Incorporates the nonlinearity

Tx 1
Baseband

Modem

ℛ ∙

ℐ ∙

DAC

DAC

sin 𝜔𝑐𝑡

cos 𝜔𝑐𝑡

+

−

PA 1

𝑠1 𝑡

Tx 𝑁
Baseband

Modem

ℛ ∙

ℐ ∙

DAC

DAC

sin 𝜔𝑐𝑡

cos 𝜔𝑐𝑡

+

−

PA 𝑵

𝑠𝑁 𝑡

Tx antenna 1

Tx antenna 𝑁

… …

𝑠RF,1 𝑡

𝑠RF,𝑁 𝑡

Rx
Baseband

Modem

ADC

ADC

LPF I

LPF Q

cos 𝜔𝑐𝑡

LNA
𝑦 𝑡

Rx antenna

𝑦RF 𝑡
−sin 𝜔𝑐𝑡

𝑗

𝐡

BS
UE

…

Tx nonlinearity Rx nonlinearity

Two-Stage DNN Structure with
Unknown Nonlinearity

• We introduce parameterized nonlinear modules 𝑓𝐮 ∙ and 𝑓𝒗 ∙ to approximate 𝑓𝑡𝑥 ∙ and 𝑓𝑟𝑥 ∙

• find model parameters u and v such that 𝑓𝐮 ≈ 𝑓𝑡𝑥 ∙ and 𝑓𝒗 ≈ 𝑓𝑟𝑥 ∙

• choice of nonlinearity approximation modules: polynomial model with limited number of odd orders

• The training should also update the nonlinear module parameters 𝝎 = 𝒖, 𝒗

• Online training is still applicable since the loss function satisfies the three axioms.

• Based on the loss, we designed a two-stage DNN structure for joint CE training and nonlinearity approximation

Stage I: DNN-Based Channel Estimator Stage II: Nonlinearity Approximation Module

MMSE

linear OMP

offline DNN, assumes V=2.5
but applied to V=1.5 amplifiers

modified OMP

two-stage DNN

Online DNN (true transfer functions)

Simulation for Unknown Nonlinearity
Default Simulation Setup:

• N=64 antennas, pilot length M=20, 𝑉𝑡𝑥 = 𝑉𝑟𝑥 = 𝑉 = 1.5, 𝑝𝑡𝑥 = 𝑝𝑟𝑥 =
1

• fully connected NN with 2 hidden layers, each with 640 neurons

• Nonlinearity module is odd order polynomial raised to the 5-th power

• Online training scheme: 10000 steps of weight updates (i.e., 10000

pilot measurements) at SNR = 30 dB.

 Linear OMP performs badly as it ignores nonlinearity

 Modified OMP compensates the nonlinear distortion with

true transfer functions. Promisingly the two-stage DNN

outperforms modified OMP.

 The online DNN (with known transfers) achieves slightly

better performance than two-stage DNN, meaning that the

nonlinear transfer functions are accurately approximated by

the two-stage structure

 Offline DNN is trained on “pilot-channel” labels generated

from the 𝑉 = 2.5 amplifiers but applied to the system with

𝑉 = 1.5 nonlinearity. The offline-DNN is prone to nonlinear

model mismatch problem as well.

Fig. 12: CE NMSE versus SNR compared with baselines

Verify the approximated
nonlinear transfers with
the actual ones

Extension to Limited

Feedback MU-MIMO Systems

X. Zheng and V. Lau, "Federated Online Deep Learning for CSIT and CSIR Estimation of

FDD Multi-User Massive MIMO Systems," in IEEE Transactions on Signal Processing, vol.

70, pp. 2253-2266, 2022.

Multi-User Massive MIMO

Massive MU-MIMO system:

• One BS with 𝑁 antennas, 𝐾 single-antenna UEs

• The received signal at the 𝑘-th user:

• To leverage multiplexing gain of MIMO,

• UEs need to know the CSIR

• BS needs to know the CSIT

• The CSITs for the BS need to be feedback by the UEs,

which induces large feedback overhead in massive MIMO

Conventional CS-based solution

• 𝐡𝑘 are estimated at the 𝐾 UEs and are fed back to the BS.

• This approach will not be able to explore the common

sparsity structure in MU channels, because user 𝑘 only

have pilot measurement for 𝐡𝑘

𝐲1 = 𝐒𝐡1 + 𝐧1
Broadcasted pilot
measurements 𝐒

Local CE 𝐡1

𝐲2

Local CE 𝐡2

𝐲𝐾

Local CE 𝐡𝐾

UE 1

UE 2

UE 𝐾

Fig. 14: Massive MU-MIMO system with structural common sparsity

Fig. 15: Conventional channel estimation and CSIT feedback in MU-MIMO system.

𝐲𝑘 = 𝐒𝐡𝑘 + 𝐧𝑘

We should explore the common sparsity structure

in the MU-MIMO channels to reduce the pilot &

feedback overhead.

Common Sparsity in MU-MIMO

Common Sparsity in MU-MIMO Channels:

• Individual Sparsity: the channel of each UE has a sparse

representation in angular domain: 𝐡𝑘 = 𝐅𝐱𝑘, each 𝐱𝑘 is

sparse.

• Partial Common Sparsity among all users: The UEs share

some common scatterers, thus the channels of different

UEs share a partial common support set.

Verification of Common Sparsity via COST2100 channel

model

• 2.6-GHz NLoS semi-urban environments with closely
spaced users randomly clustered in a 50 m x 50 m target
area

• 20 users randomly clustered in a 5 m x 5 m square

• A support is identified with significant raise-over-thermal
(20 dB)

• Common support is identified if it is a support for all users

Fig. 16: Channel supports of two random users. We can see there is large
portion of overlap in the supports of the two users.

Fig 17: Histogram of ratio of common sparsity level. Typical common sparsity
ratio lies in the range of 30% ~ 50%.

Exploiting Common Sparsity

Distributed MU-MIMO Channel Estimation Scheme [8]:

1. The BS broadcast compressed training pilots to UEs

2. The UEs feedback compressed pilot measurements to
the BS

3. The BS recovers the channels via joint-orthogonal
matching pursuit algorithm exploiting common sparsity

[8] X. Rao and V. K. N. Lau, "Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User
Massive MIMO Systems," in IEEE Transactions on Signal Processing, 2014.

𝐲1 = 𝐒𝐡1 + 𝐧1
Broadcasted pilot
measurements 𝐒

𝐲1 UE 1

UE 2

UE 𝐾

𝐲2

𝐲𝐾

{𝐲1, 𝐲1, … , 𝐲𝐾}

Joint
Channel

Estimation

{ 𝐡1, 𝐡2, … , 𝐡𝐾}

This approach can facilitate CSIT at the BS because

the CSITs are jointly recovered at the BS.

Problems:

1. The CSIR estimation of the UE cannot be achieved
because the compressed pilot measurement
observed locally will NOT be sufficient for individual
UE to estimate the per-link 𝐡𝑘

2. The J-OMP algorithm is iterative and has high
computational complexity channel estimation
cannot be done in real time for massive MIMO

We also need an online DNN-based solution for MU-

case such that

• Channel inferencing is fast

• Online training that utilizes MU structural sparsity

• Facilitate both CSIT and CSIR estimation at the

same time

Desire for Online DNN of the MU Case

Enabling CSIT and CSIR Estimation

To achieve the purpose of CSIT and CSIR estimation:
• We propose a two-tier DNN structure

• Stage-I jointly estimate the common supports 𝐩 from pilot feedbacks {𝐲1, 𝐲1, … , 𝐲𝐾} of all UEs

• Stage-II estimates the channel 𝐡𝑘 for each user utilizing 𝐩 and 𝐲𝑘 (all users share the same Stage-II weights)
• For CSIT estimation:

• The BS implements forward propagation of Stage-I and Stage-II to estimate the CSIT of all users
• For CSIR estimation (federated learning):

• The BS will periodically broadcast 𝐩 and Stage-II DNN weights to the UEs.
• The UEs perform CSIR inferencing locally based on downloaded Stage-II weights and its own pilot measurements.

𝐲𝑘 = 𝐒𝐡𝑘 + 𝐧𝑘

Broadcasted pilot
measurements 𝐒

𝐲1 UE 1

UE 2

UE 𝐾

𝐲2

𝐲𝐾

{𝐲1, 𝐲1, … , 𝐲𝐾}

Stage I

Stage II

 𝐡1, 𝐡2, … , 𝐡𝐾

 𝐩

𝐲
1 ,𝐲

2 ,…
,𝐲

𝑘

Periodically Broadcast 𝐩 and Stage II weights 𝛀𝟐

Stage II 𝐡1

 𝐩

𝐲1

Stage II 𝐡2

 𝐩

𝐲2

Stage II 𝐡𝐾

 𝐩

𝐲𝐾

 𝐩 and Stage IICSIT inferencing
at the BS

CSIR inferencing
at each UE locally

…

Detailed Two-Tier DNN Structure

𝐲𝑘 𝑘=1
𝐾

pilot feedbacks
of all users

common
support

estimation

 𝐩

Channel
Estimation

 𝐱𝑘 𝑘=1
𝐾

angular domain
channel estimates

Support
counter

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 𝐩 , 𝐩

𝐩

ℒ 𝐱; 𝜽
Stage-I
DNN

Stage-II
DNN

Forward inferencing of Stage-I DNN

Backward training of Stage-II DNN

Forward inferencing of Stage-II DNN

Backward training of Stage-II DNN

online loss function

Stage-I : DNN-based common support estimator (with weigths 𝛀𝟏)

• Input: pilot feedbacks from all users 𝐲𝑘 𝑘=1
𝐾

• Output: common support 𝒑 ∈ 0, 1 𝑵

• The activation function of the output layer is the sigmoid function, that

outputs a soft probability.

• Training of Stage-I is a multi-class multi-label classification problem

using the BCE loss

Stage-II : DNN-based Channel Estimator (with weights 𝛀𝟐)

• Input: pilot feedbacks and 𝒑 estimated by Stage-I

• Output: channel of all users 𝐱𝑘 𝑘=1
𝐾

• A common support counter calculates p based on channel estimates

and use it as training label for Stage-I training

• Stage-II DNN training is trying to find a set of weights that minimizes

some loss function for CE

Challenge: Design of loss

• Enable online training

• Leverages individual channel

sparsity

• Leverages the partial common

sparse structure among users

Online Loss Design Exploiting
Common Sparsity

• Similarly, for online training of the channel estimator, we need an online loss function that (i) does not

need true channel, (ii) leverages the common support p and (iii) measures the error with the true channel.

• We proposed a weighted l1-norm regularized loss function utilizing the common support estimate 𝐩.

• The main idea: set 𝑤𝑛 smaller if 𝑥𝑛 is more likely to be large, such that 𝑥𝑛 is less penalized.

At the BS:
1. Broadcasts pilots
2. Update Stage-I and
Stage-II weights online
3. CSIT inferencing
4. Periodically broadcast 𝐩
and Stage-II weights

Federated Online Training

𝛀1
1

𝛀2
1

Frame 1

𝐲𝑘
1

𝛀1
0

𝛀2
0

one step

update

 𝐡𝑘
1

 𝐩 1

 𝐩 1
𝛀2

1

𝐲𝑘
1 𝐱𝑘

1

𝛀1
2

𝛀2
2

Frame 2

𝐲𝑘
2

one step

update

 𝐡𝑘
2

 𝐩 2

 𝐩 2
𝛀2

2𝐲𝑘
2

 𝐱𝑘
2

…

…

𝛀1
𝑗

𝛀2
𝑗

Frame 𝑗

𝐲𝑘
𝑗

one step

update

 𝐡𝑘
𝑗

 𝐩 𝑗

 𝐩 𝑗
𝛀2

𝑗𝐲𝑘
𝑗

 𝐱𝑘
𝑗

…

…

…
Null

…

Random initialization

UE 𝑘
(implements CSIR

estimation)

BS
(implements

DNN training

and CSIT

estimation)

𝐲𝑘 = 𝐒𝐡𝑘 + 𝐧𝑘

Broadcast pilot
measurements 𝐒

𝐲1 UE 1

UE 2

UE 𝐾

𝐲2

𝐲𝐾

{𝐲1, 𝐲1, … , 𝐲𝐾}

Stage I

Stage II

 𝐡1, 𝐡2, … , 𝐡𝐾

 𝐩

𝐲
1 ,𝐲

2 ,…
,𝐲

𝑘

Periodically Broadcast 𝐩 and Stage II weights 𝛀𝟐

Stage II 𝐡1
 𝐩
𝐲1

Stage II 𝐡2
 𝐩
𝐲2

Stage II 𝐡𝐾
 𝐩
𝐲𝐾

 𝐩 and Stage II

CSIT inferencing at
the BS

CSIR inferencing at
each UE locally

…

At the UEs:
1. Feedback received pilot
measurements
2. Periodically download 𝐩
and Stage-II weights
3. CSIR inferencing

Timeline: Frame 1, 2, 3, …

Simulation

Fig. 19: CPU time of proposed solution compared with various baselines
under different numbers of pilot feedbacks in each time slot.

 One step of channel inferencing is about 1000x faster than

JOMP [8] algorithm, and 300x faster than MMSE algorithm.

 The fast inferencing enables real-time CE for MU-massive

MIMO.

Default Setting:

• BS equipped with ULA of 𝑁 = 64 antennas, 𝐾 = 20
UEs with single antenna, pilot length 𝑀 = 40.

• 3GPP SCM channel model: 28 GHz carrier frequency

system in an urban macro propagation environment.

𝐶 = 2 clusters of scatterers, each has 20 significant

paths with angular spread of 8°. One of the cluster is

a common scatterer.

• DNN structure: both stages has 2 hidden layers with

100~300 neurons each.

20-subpaths with
angular spread of 8°

UE 1

UE
2

local clustering
scatterer for UE1

local clustering
scatterer for UE2

shared common
scatterer for all UEs

Fig. 18: MU-MIMO channel for a 𝐾 = 2 user case. There is a common
clustering scatterer for all users and one local scatterer for each user.

Computation Time Saving

number of received
pilot feedbacks per time slot

20 40 100

Tow-tier DNN
one step of CE inferencing

0.1206 ms 0.2137 ms 0.5161 ms

JOMP 122.994 ms 236.92 ms 654.08 ms
MMSE 46.236 ms 94.83 ms 234.47 ms

Gain from Common Sparsity

Fig. 20: CE NMSE v.s. common sparsity level at
SNR = 30 dB and total sparsity = 14.

 In this experiment, the channel of each user has 14

support, and we vary the number of common support

of each user

 The CE quality of the two-tier DNN gets better as the

number of common supports increases, illustrating

the benefits of more common support (i.e., hidden

correlation among all users)

 In the case of no common support (𝑠𝑐 = 0), the two-

tier DNN has similar performance with the per-link

online DNN

CSIT & CSIR Tracking

 Propagation environment is static for the first 1000 steps. Then, a new

common scatterer starts moving towards the BS and stops at 5000-th step.

 Offline DNN fixed weights after offline training & apply online, while online

DNN continuously updates its weights based on real-time measurements.

 BS performs DNN training & CSIT estimation. It also broadcast Stage-II

DNN weights to the UEs every T=1000 steps, so that the UEs can perform

CSIR estimation

 Offline DNN performance degrade with time as its

weights cannot adapt to the propagation environment

 Online DNN at the BS can keep track of CSIT channel

model.

 At the UE, the CSIR estimation error converges to that of

the CSIT estimation after about 5 Stage-II weights

broadcasting periods.

Fig 21. Time-varying propagation environment for a 𝐾 = 2 system. Fig 22. CSIT & CSIR Tracking of the two tire DNN compared with offline DNN.

local clustering
scatterer for UE2

20-subpaths with
angular spread of 8°

UE 1

UE 2

local clustering
scatterer for UE1

shared common
scatterer 1 for all UEs

moving shared
common scatterer 2
for all UEs

stop @ t=5000

start @ t=1000

Conclusions

Conclusions

Online Training Framework for massive MIMO CE:

• [Online Loss Function] propose 3 axioms for a legitimate online loss function - the channel estimator

can be trained online based on real-time pilot measurements without need for channel labels.

• example online loss functions that satisfy the 3 axioms and

• exploiting channel sparsity for reduced pilot overhead

• [Online Training Algorithm] enables simultaneous training and inferencing.

• the DNN weights can adapt to the time-varying channel model online (tracking ability)

• robust to various model mismatches (channel model & nonlinear model & array geometry)

• enjoying faster channel inferencing

• 𝜖-analysis of online training algorithm

• [Extension to MU-MIMO] enables CSIT & CSIR estimation with reduced pilot feedbacks

• two-tier DNN structure exploiting partial common sparsity

• federated online training enables UEs to utilize the common sparsity structure learned at the BS for CSIR

estimation.

Thank You

