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Massive MIMO Signal Model

Consider a massive MIMO system:
* Rx has N antennas
e Tx has M antennas

stacking over time:

* For CE, the Tx transmits sequences of known pilot symbols
S € CM*L of length L to the RX, the received signal in matrix

form Is Pilot Observations Pilot Symbols
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Tx pilot sequences

| Rx pilot measurements
$ = [s(D).s(2), -, s Y=,y .,y

33 Y * It is important to estimate the CSI H € CV*M to leverage the

%3 P . . .

P [ Channel Estimatior } benefits of massive MIMO, and various MIMO techniques

orithm
KR gl rely on accurate CE:
)’4}‘\ - v « Design precoding & decoding matrices to exploit spatial
' H €. Feedbackﬁ ....................... H multiplexing gain
CSIT CSIR « Design equalization for data detection

Tx « Power & interference management

Fig 1: Point-to-Point MIMO with Explicit CSIT Feedback. CSIT will also be needed for enhanced performance (e.g., for

precoding), in which case the CSI needs to be fed back to the
TX.



Traditional Channel Estimation

» If no prior information on the channel

« Least square (LS) formulation
Hys = arg ming ||Y — HS||}

« LS has closed-form expression
H s = YSH(SS) T
 Problem: 1) pilot number L needs to be larger than channel dimension M, induces large pilot overhead for massive MIMO 2) high
complexity due to matrix inversion

> If given statistics (covariance) of the channel, i.e., let y = vec(y), h = vec(h) , and we know R = E[hh”]:

 Linear minimize mean square error (LMMSE) can be formulated as
hyysg = arg minw p Ephy) {(B — h)H(B — h)}
h=Wy+b
« LMMSE has closed-form expression [1] provided S satisfies SS# = pLI,,:
hyvse = (R7202 + pMIyy) " H(ST @ Iy)y.

 Problems: 1) hard to obtain accurate covariance and 2) high complexity due to large matrix inversion

To reduce pilot overheads, we must exploit the intrinsic structures of H

[1] A. Assalini, E. Dall'Anese and S. Pupolin, "Linear MMSE MIMO Channel Estimation with Imperfect Channel Covariance Information," 2009 IEEE International Conference on Communications, 2009.



Scatterer 1

MU

Massive-MIMO
BS

Scatterer 2
Cp -

channel gain from the BS to
the MU associated with the
p-th propagation path

coordinate of the n-th
antenna relative the the
center of the BS

/> AoD of the p-th path

- X

Fig. 2: Channel sparsity induced by limited
scattering in the propagation environment.

* The channel Is sparse under certain basis due to limited
scattering in the propagation environment.

* By exploiting hidden sparsity structures in the MIMO
channel, we can estimate H with reduced pilot
overhead (L < M).

» For example, consider the channel vector h € CV
between one Tx antenna and the Rx antennas, then h
has a sparse representation in the angular domain

h = Fx

« F e CV*V is the steering matrix (determined by array

geometry)
* X IS the sparse angular domain channel

 Different sparsity structures can be exploited to reduce
pilot overhead



Different Sparsity Structures

Random Sparsity Clustered Sparsity

* The channel is sparse due to limited * The channel supports are clustered in subsets
propagation paths between Tx and Rx of overlapping candidate supports
* We just know x Is sparse and the support is  Induced by angular domain spreading of

random without special structure propagation paths

I- - 5 o ¥

3| Cluster 2
Cluster 1
Nonzero Supports 2 :

| Cluster 3 °

angular bin index

Fig 3: Random sparse channel x. Fig 4: Clustered sparse channel x generated from the
COST2100 channel model.



Different Sparsity Structures b &

ihdividual

" tterer supports

Common Sparsity for MU-MIMO s \-
* The channels of different users are usually v

correlated as they tend to share some Kif“ﬁﬁp# S

common local scatterers at the BS shared common supports
 Channels of different users usually share Vassive A

- MIMO BS - XZ :-
some partial common supports. i

=
P

The histogram in Fig. 5 is generated for COST2100 channel

model

e 2.6-GHz NLoS semi-urban environments with closely
spaced users

e 20 users randomly clustered in a 5m x 5m square

A common support is identified when it is a support for all
the 20 users

e e = Common sparsity exists in the MU-MIMO channel, and

Fotlo of commen eparsky leval 1o totel aparsity level typical ratio of common sparsity level ranges in 30% ~ 50%
Fig 5: Histogram of ratio of common sparsity level . yYP P y & ° °

emperical distribution of common sparsity ratio




Exploiting Different Sparsity Structures

Optimization-Based Approach Bayesian Approach

« Random Sparsity: impose an i.i.d. Laplacian Prior on the random
sparse channel:
N

1
i — _ 2
me2 ly — Ax||5 + Al|x]|4 D) = 1 < Ixnl>

« Random Sparsity: L1-norm regularized LS (standard lasso)

Az =7

n=1

with A = SF being the overall measurement matrix | |
* Clustered Sparsity: Impose an HMM prior on the clustered sparse

« Clustered Sparsity: Use block sparse lifting transform x = channel x [4]:
Lz and [, ;-norm regularization for clustered sparsity [2]:

N-1
1 2 JOESICN [ FICHES
min> lly - ALz} + Azl

N
 Common Sparsity: given statistical common support p(xls) = anl(sn - CN (xn; 0,07) + (1 = 5,)8(x))
iInformation in the MU channels (e.g., probability of being a
common support), use weighted L1-norm regularization [3]:

« Common Sparsity: impose a spherically-contoured radial
exponential distribution (SRED) on the common-sparse x [5]:

N
1 G
: 2 E
min - |ly — Ax||5 + 1Wn|xn| p(x) ~ ‘ 1‘ A% exp (—7\”"9”2)
n= o

smaller probability = larger w,, = larger sparsifying penalty with x, being the g-th group of common sparse x

[2] A. Liu, V. K. N. Lau and W. Dai, "Exploiting Burst-Sparsity in Massive MIMO With Partial Channel Support Information," in IEEE Transactions on Wireless Communications, Nov. 2016.

[3] L. Lian, A. Liu and V. K. N. Lau, "Weighted LASSO for Sparse Recovery With Statistical Prior Support Information," in IEEE Transactions on Signal Processing, 15 March15, 2018.

[4] A. Liu, L. Lian, V. K. N. Lau and X. Yuan, "Downlink Channel Estimation in Multiuser Massive MIMO With Hidden Markovian Sparsity," in IEEE Transactions on Signal Processing, 15 Sept.15, 2018.
[5] X. Zheng, A. Liu and V. Lau, "Joint Channel and Location Estimation of Massive MIMO System With Phase Noise," in IEEE Transactions on Signal Processing, 2020.
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Exploiting Ditferent Sparsity Structures &3¢

y For CS-base solution, the pilot overnead can be
channel Estimation significantly reduced by exploiting sparsity structure.

parse channel For example, standard LASSO algorithm only requires

non-sparse
channel

the pilot length grows with [6]
Traditional Compressive L~P . 109 (N ) K N
Methods Sensing-Based . : : :
l.e., L grows linearly with sparsity level, and only
no prior channel logarithmically with channel dimension.
statistics
available
LS MMSE Optimization- Bayesian- . i _
based e Problems with CS-based solution:

1. No closed-form solution
2. Requires an iterative algorithm to find solution

¢ E * 3. lterative algorithms usually have high
Standard ~ Burst  ~ Weighted  Laplace  HMM SRED computational complexity, thus difficult to be
LASEO | LASE0 ——_ Prior applied for massive MIMO CE in real-time (within

aTTl < 1ms for 5G).

[6] Wright, John, and Yi Ma. High-dimensional data analysis with low-dimensional models: Principles, computation, and applications. Cambridge University Press, 2022.
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Compressive Sensing v.s. Deep Learning s¢

Signal Model Inverse Model
Y =HS+ N Hqo = fo (Y Fast inferencing: forward propagation of a

| trained DNN Is very fast, suitable for real-time
CS-based CE: the OMP algorithm

nitialize 1, = v, Ag = 6. ™~ channel inferencing
fort = 1,2,...do
Ay = argmaxyea,_, |§£Irt—1|
Vo Ay = A1 U{Ae] _.f Table 6: Estimation and Computational Performance of DNN Compared with
Xy = argming(|Ex X — y||2 Iterative OMP and PGD Algorithms for a 64 x 64 MIMO.
I, =y — EX; r? NMSE CPU time (in sed.)
end T # of samples | OMP PGD DNN OMP PGD DNN
\ H = FX, / > 3200 0.4706 | 0.0027 | 0.1524 | 193.0590 | 6.1419 |[]0.2809
vectorized signal y = Ex + n withy,x = vec(Y), vec(X), E = S"®F o 1600 0.5802 | 0.0082 | 0.1903 | 67.7541 | 5.5186 |[|0.1532
DNN-Based Channel Estimator o 800 0.6162 | 0.1608 | 0.3112 | 38.7693 | 4.9726 [|0.1209
/ —— pr— pr— \ 'é 400 0.6852 | 1.1680 | 0.4221 | 26.1790 | 2.4516 |[]0.0920
N 7 ' ! . y,
S =

= , i~ = , —1 A /}
NN Q4 “'\\V X/ 47 “\\V X/ 47
SRR ORI B OBRLD
(A KR K4
LS ARSI AR

300x ~ 700x speed up than the

iterative OMP algorithm.




Traditional Offline DNN-Based CE

« Traditional DL-based channel estimators are trained offline based on MSE loss, training is modeled as an optimization problem over all the

trainable weights

arg min Lyse (Foi H) = argmin | fo (Y) — H;

 The MSE loss needs truth H in labeled data pairs (Y, H) for supervised training. But in practice, true H are difficult to obtain, and are generated
offline according to certain channel model. The training and CE are divided into two stages:

- Offline Training Stage: tune the DNN weights offline based on MSE loss and channel labels

« Online Inferencing Stage: after offline training, fix the weights for CE for online deployment

* Problem: the offline trained DNN cannot adapt its weights to the channel model in actual scenario.

Frame 1, 2, 3, ...
— Qffline DNN model with weights
_______________________________________________________________ Qofﬂine

% — ‘\ Rag real-time received pilot measurements ‘\
~— - \ '/ \|

Labeled data f ffli _ﬁ' v 1 . Received pilot
: S;;nﬁlztior?ﬁo?erln . O ) Il_ne : : Frame 1 Frame 2 Frame 3 ee Frame j e : Y(]) miasqr(ehrr}ents at
: {(Y(l),H(l))’ ___,(Y(B),H(B))} L tra”'”ng I I ) @) 3) . 0 I the j-th frame
! [ I Y Y Y Y [
, (thousands of | : [ A :
I i : — = — — an e L

N— ___~ Iterations I _ I LR -~ J —_— offline training data path
: ) -I—> Q'Offllne /: offline Qotfline Qo tfline Qoffline T \/ e
' I T L -
| 0 —_— —- -
: ﬂ(()fz'line : E : l = —I _— e - — ‘ ——————— l - i online channel inferencing data path
I (1 (2 3 (€ N () I
: DNN with random : Fis weiahts & : HW H® H e ., HY : .

imitializati 1 ‘oo, : .

| initialization ,,' by gn”ne \ /: The weights are fixed and cannot adapt to
\ LN | ] . .

M e e s N e e e e e e e e - the time-varying channel model

Step 1: Offline Training Step2: Online inferencing



Desire for Online DNN

Ca I we have an online training scheme that

1. learns the channel model online, while
2. enjoying fast channel inferencing

?

at the same time «
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Online DNN-Based CE

* |n order to enable online training, we need an online loss function that (i) does not need true H, (i) channel model

free and (i) measures the error with the true H. Formally, we define an online loss function as the following:

Definition 1. An online loss function for channel estimation . 1) exempts the training from the need for labeled channel data ad the

L (H 9) v,S}=0_ -~ underlying channel model, making online training possible

’
(

should satisfy the following four requirements:

2) guarantees that the minimizer, as an inverse mapping of the loss
1) {Online Requiremeny} £ { ¥ s a “function of observed ~ function can be approximated by the DNN
meé deep neural network Dutp}lfﬁ (with- :

out requiring true channel H nor the underlying channel 3) guarantees that when the DNN is trained to minimize the loss

model). Il _ — - =» function, the output will be driven close to the true channel for large
a)@ulantv Requirement -(H ’Hj 1S {:ﬂntumﬂus in H signal-to-noise ratio (SNR)
and @ e
3) {(Consistency Requiremend- There ExistS a constant (', . . :
cucT T ) Online Training Formulation
HH* HH /( + Define the mapping 7 : X — X = vec (| Re(X) Im(X) |)
p/o2

» The input to the DNN is ¥ = 1 (Y). The output is denoted by h = n (H)
L

where H* is the minimizer of the loss function, i.e.. . _
. 0= {W[”,b[”} are the learnable weights in an L-layer DNN

H™ = argmin £ (H 6') :
H

~

e Hpay (37;9Q)=n""1 (h) is the estimated channel matrix

« Training of the DNN can be modeled as an optimization problem

[Q* = arg m&nE {ﬁ (I:IDNN (y; ) ; 9) }]




Online Loss vs. Offline Loss

Online Loss Function
Lonline(HQ; 9): {Y,S} =06

1. Does not need true channel labels H, nor
any prior knowledge about the channel
model or antenna geometry.

2. Training Is based on real-time received
measurements Y only, which contains

Information about the actual channel model.

3. Training can be implemented online where
the training data comes In a streaming
mode. The weights can adapt to the time-
varying channel model while generating
channel estimation.

Offline Loss Function

Loffline = Hﬁ; — HHIZ;-

. Need paired-labels (Y, H) for supervised

training.

. Labels generated offline according to some

channel model & antenna geometry, which
may differ from the actual scenario.

. Training Is iImplemented offline. Then the

weights are fixed for online inferencing,
during which the DNN cannot tracking the
changing channel model.



Example Online Loss Functions

5 E g 1 i |_ S On I | ne LOSS ? Lemma 3: [Consistency of the Online LS Loss Function]| 1t

the transmitted pilot matrix S is row orthogonal such that SSH =
I r with pilot length L, > K, and let H* be the minimizer
of the LS loss function (16) given by

For general “non-sparse” channel matrix H, we 2
propose the least square online loss function: H* = arg min ||Y — HSHF. (17)
. 12 .
L1.s (H; 9) — ||Y — HS || . where 8 = {Y., S} , Then, H* has an error in the Frobenius norm given by
r - a’ N, "
. . _ |
Clearly, it satisfies the r = To(0/02) (18)

’1. online requirement: it does not need true with probability at least 1 — exp(—L N, (a — 1)?) for any a >

H as training labels and does not depend 1. .
on any channel model nor antenna [ ——————
2 feeol:rl]aerﬁtcy requirement: it |s cﬁnt;;\’l:c;us in /Least Square oniine Joss function Stim
1. and S.V 9 Y \r;gw(l;zi pél)c()t length > channel dimension.
- ploit channel sparsity in the
3. Thelansistency requirementss satisfied by online loss design for reduced pilot

the lemma on the right side. \overhead. -




Example Online Loss Functions

LE;Q\'Z: Nuclear-Norm Based Online Loss

The rank-RIP can be satisfied (w.h.p.) by subspace
sampling on y(t), i.e., at channel use t:

r(t)=FY t)Hs(t) +F? (t)n(t),t=1,2,..., L.
The combining matrices F(t) € CV*M/L and pilots s(t)

For sparse channels, we propose the nuclear-norm
regularized online loss function:

N . 2
Lonuclons (H; 9) _ 1 ) r— A (H) ||
2 2

{7, Y,S}e0, (1)

* r is some M-dim linear & noisy measurement of H are generated randomly [7] according to

under a linear mapping A(H) F )], = 2 exp (i) 15 (0 = YL exp (j6).
 ||H||. is the nuclear norm, well-known for imposing " VNL VK

rank-sparsity. where ') and &*) are uniformly distributed in [0, 27).
Clearly, the 1)online requirement and the 2)regularity
requirement are satisfied. With rank-RIP satisfied, we have the following Theorem

for its consistency requirement.

To Sa_tISfy the 3) ConS_IStenCy requ”_.ement’ Ilne_ar (Consistency of the Online Loss Function) Given A satisfies the rank-RIP with constant
mapp”’]g A ShOUId Sat|sw rank-RIP’ l.e., VH W|th Sap, and let H* be the minimizer of the online loss function (1), then with probability at

i least 1-2ex —M,I:I*h n error in Frobenius norm given b
rank(H)<d, 36, with 0 < 6,< 0, S.t. eas p(—qM) as an erro obenius norm given by

2
(1 —6a) |[H% < [AHE)]5 < (1+64) [H]
with v = 16\/% -max (K, N) provided M >8P (N, + K + 1) for some constant

[7] W. Zhang, et al. "Leveraging the Restricted Isometry Property: Improved Low-Rank Subspace Ci.g >0
Decomposition for Hybrid Millimeter-Wave Systems," in IEEE Transactions on Communications, Nov. 2018. ’ /

2 - Cimax (K, N)P

U=l = =G0




Online Training Algorithm

Training can be implemented on-the-fly based on real-time received pilot measurements,
where the training data comes in a streaming mode.

Algorithm 1: Online Training Algorithm.

Input: Pilot S, received pilot measurements Y /),

7 =1,2,3,...,online loss function L(-).

Output: HY. (. j=1,2,3,.... . ___
Initialize: 7 = 0. DNN \&e.l-g-ht's Q=00

while Onhne training » mode is on do
Obtain received sample Y ) at the j-th frame.

FPTompute z!!, al!, 1 =1,.... L by (10) for YU,
[BP] Zompute da'”! by (15) and use BP to compute
FAVY

, dbl. VI to obtain d2Y) for Y (9,

Online Learning: The online training

. algorithm will update the DNN weights on-
the-fly whenever a pilot measurement is
received in a frame

Update the weights Q) pased on the first and second Simultaneous Inferencing: the DNN will
moments of dQV) . _ _ _ e m e mmmmmmmm == + output the CE based on its current weights
Qutput CEXor Y by HY) = 7 {(DNN () (2@))). simultaneously

7] <7+ 1.

end while




e-Analysis of Online DNN-Based CE

[e-Analysis for online DNNJ| Given a legitimate online loss function L (Iflg; 9) satisfying

the properties in Definition 1, for any given € > 0, there exists a deep neural network
with width M and at most L = 2 (|log, 2KN| + 2) layers, such that the output
h = DNN (V) satisfies

2
< C

F~ plos
—rNL/5

sup H'r]_l (ﬁ) — H + €

Yey

for some constant C, with probability at least 1 — e in the compact set
~ 1

Y = {Y §TY Y < 4NLr} for r >1 and some positive definite matrix ..

Sketch of proof: \

1. Constrain the DNN input Y in some compact set Y w.h.p.

2. With Regularity Reqrm., prove that the inverse mapping H* = min £ (ﬂ; 9)

IS a continuous mapping on Y. [The Maximum Theory]. o

3. Bound the error between DNN output and the inverse mapping by a small
approximation error €. [Universal Approximation Theorem]

\v

4. With Consistency Regrm., bound the error between the DNN output and the true

Kchannel using the triangle inequality. /

The theorem states that given a legitimate
online loss function, there exists a “large
enough®™ DNN, such that its output will
approximate the true channel with
arbitrary accuracy.

The € -analysis above gives an error
bound between the DNN output (with
bounded layer) and the truth channel

; Ca IS the error induced by system

noise, which can be arbitrarily small
for large enough SNR

. IS the DNN approximation error,
which can be arbitrarily small for DNN
with large enough width




Online Training v.s Offline Training

Frame 1, 2, 3, ...

___________________________________________________ DNN model with
~ oS s~ - weights Q¢aine

z N real-time received pilot measurements \
Labeled data from offlin Offline
simulation model Lo
(YO, HD), ., (Y®, H®) training

Offline DNN:

Separate offline training and
online training stage, with
weights fixed during online

Received pilot
measurements at

1
l
lY(l) lY(Z) lY(B) YD : the j-th frame
|‘Q'ofﬂine| |Qofﬂine| |Qoffline| e e : offline training data pa
I
I
I
I
]
/4

Frame 1 Frame 2 Frame 3 Frame j
[ X N ) ® 00

.y
————_’

(thousands L Qo ffline
of iterations)

Q©

offline

l l 1 l =y ONline channel inferencing data path

N N ] ----\

s NN BN ENN BN BN

: - DNN with random : : HW H® 1 (SO HO  *°°
Inferencing. \_ inifializaon e S s
Stepl: Offline Training Step2: Online inferencing
Frame 1,2, 3, ...
O N | Ine D N N : real-time received pilot measurements
Frame 1 Frame 2 Frame 3 QOC Frame j oo
Simultaneous online training y® y® y®) LY® YO 142
: : : .o one siep .
and online inferencing. The [2@ |— update QY e
DNN weights are continuously _R_ar|1_dom ﬁlm o) o) oo =0 e
updated on-the-fly to track the 'Mmtaiization SNN model with eceived oilot
- : - _ _ : €CEIvVea pIio —>online channel inferencing data path

time-varying channel model. weights 00 at YO | s rements at

the j-th frame the j-th frame — online training data path



Computational Complexity

. _ _ » For clarity, the computational complexity Is
Table 7. Complexity and Computational Performance of DNN Compared with lterative Y P P y

Algorithms for a 64 x 10 MIMO. _CompUted for a MIMO W'th Ny X N MIMO. L
Algorithm Complexity Overall CPU time of different algorithms s the number ZOf layers in th_e DNN and each
: per complexity Algorithm  |CPU time (in ms) !ayer_has G(I_VT) neurons' _K s the number of
Online DNN O(N) @(LN#) | Onestep channel 0209 iterations for iterative algorithms.
Inferencin Inferencin ' : : : :
; - | Burst LAssc?on » For online DNN channel inferencing, the main
Burst LASSO | O(D*N7) | BUeD™N) | =2 1248 computational burden is just matrix-vector
GOMP O(L.NY) | 0(kLsN%) | GOMPonone 16.323 multiplication during forward propagation,
sample  which has very low complexity.
MMSE ] O(NS) MMSE on one 19 561 | | o
sample | » One step of channel inferencing is more than

1000x faster than Burst LASSO algorithm,
and 50x faster than OMP-based algorithm.

» The fast inferencing enables real-time CE for
massive MIMO.

- \




Simulation: Comparison to Baselines s

2 Default Simulation Setup:
a?gular spread of
sattrin *8 « N=64, M=10 antennas, pilot length = 8, transmit power p=1 with varying noise
) : power.

« Channel model uses 3GPP SCM TR 25.996 for an urban macro propagation
environment with P=2 clusters of scatters, each cluster produces 20 significant
sub-paths with an angular spread of 8.

scattering
cluster 2

é% « DNN structure: fully connected NN with 2 hidden layers, each with 240 neurons

QW o sub-paths - ot i I I

% saterin 20 sub-path »  Online training scheme: 8000 steps of weight updates (i.e., 8000 pilot

TX measurements) at SNR = 30 dB .
-
.E MMSE
E 10-1 - N - ’ . . - .
7 ] » MMSE does not perform well due to insufficient pilots
E » Online DNN NMSE reaches that of offine DNN at high SNR when
c online DNN | there iIs no model mismatch
o » We will see the offline DNN will be prone to various model mismatch
U
s problems.
=" offline DNN / _
I'LIII 5I lID l|5 EID EIS 3ID
SNR

Fig. 8: CE NMSE versus SNR compared with baselines evaluated on
3GPP TR 25.996 SCM channel model.



Robustness to

Channel Model Mismatches

H
= -
| -
s =
| |

NMSE of channel estimation

offline DNN, trained on 40-paths but

applied to 60-paths channel MMSE, uses 40-paths covariance but

applied to 60-paths channel

R gl T T LT weap——

.,

iy

[ -
- GOMP, assumes 40-paths but applied to

/' 60-paths channel
e Q. — _

MMSE, uses 40-paths covariance
~and applied to 40-paths channel
e

S

- online DNN, appliedto  5njine DNN, applied to
60-paths channel 40-paths channel

GOMP, assumes 40-paths and
applied to 404paths channel

——

offline DNN, trained on 40-paths and applied to 40-paths channel

Fig. 9: CE NMSE versus SNR for different propagation environments.

0 5 10 15 20 25 30
SNR

» Baselines:
» NMSE uses 40-paths covariance

» GOMP assumes 40-paths channel
model

» Offline DNN trained on 40-paths
channel data

\ » NMSE of the baselines degrades significantly
as the propagation environment switches
from 40-paths to 60-paths case.

~> Online DNN can adapt to such change of
propagation environment.

|




Robustness to

Antenna Array Geometr

~ 100- :;::_4..____‘,,_____*_____*_____*_____' » Baselines:
o ] D N At e A > NMSE uses channel covariance for
= 2 I A N SRR\, JE ¢ MIMO equipped with ULA
o Joffline DNN, trained on ULA but applied to RSA
E y MMSE, uses ULA covariance but applied to RSA » GOMP assumes ULA antenna geometry
o GOMP, assumes ULA but applied to RSA > Offline DNN trained on channel data
E MMSE, uses ULA covariancind applied to ULA generated for ULA system
m lﬂ_l - x . . " g
E ~. online DN, applied to RSA 1~ » NMSE of the baselines degrades significantly ‘;
© ~ ' | | as the antenna geometry switches from ULA
— W online DNN, applied to ULA
O S~ to RSA.
; S
o — .- — ~ ' I
o Y e —— e ——— » Online DNN can learn the underlying
LL antenna array geometry based on received
UV 10-2 - GOMP, assumes ULA _
= and applied to ULA pIIOt measurements
=
offline DNN, trained on ULA and applied to ULA
0 5 10 20 25 30

15
SNR
Fig. 10: CE NMSE versus SNR for different antenna geometry.



Tracking Ability

g4

[m-]

# .~ angular spread of 8
scattering .
cluster 1 \‘(

scattering

A’:‘:’.”‘ Iy
Y X O

S = > DR
IS @ ©.
ﬁ" new scatterer 3 )4 }\

Tx Rx

new scatterer 3
appears at step 4000

» The environment is static for the first 4000 steps. A new
scatterer (lorry) starts moving towards the Rx at the 4000-th
step.

» The offline DNN weights are fixed after completion of the
training phase at the 4000-th step. But the online DNN is
continuously updating the weight.

)
Training phase Inferencing phase

100} of gzﬁeorf:g”e of the offline trairned DNN

e e—————

I Offline training completed,

[ and a new scatterer (lorry)

ll——Starts to move in w

! At
- -

1071 ¢ i " ;
" online DNN,
L continuously i
! % updatlng welght
1072} offllne DNN : '!‘ﬁ z : M

2000 4000 6000 8000 10000 12000 14000
number of iterations

Fig. 11: Sample path of NMSE of CE v.s. weight update step number for
online DNN and offline DNN.

normalized square error of CE

——

> Offline DNN CE error starts to increase after
4000-th step as the weights cannot adapt to the
change of model induced by the new scatterer

» Online DNN can keep track of the channel
model on-the-fly by adjusting the DNN weights,
it still maintains good CE accuracy despite a
changing propagation environment.
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Extension to MIMO with Nonlinearity S

»
N
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Massive MIMO system with Nonlinearity: Similarly, for online training, we need an
« One BS with N antennas, one single-antenna user online loss function that satisfies the

three axioms. But we also need to

 For downlink CE, the BS broadcasts pilot sequences S € CM*N of length M to the UE _ _ _
Incorporates the nonlinearity.

* The nonlinear distorted, noise corrupted measurements at the UE Is r (5{ 0. fix. ) {y S} c 0
Y Xy JIX ) ) 3
y:frw(ftw(s)h)+zv N o
|
« h € C" is the spatial channel to be estimated Incorporates the nonlinearity

() and f;,(-) are the transfer functions of the PA at the BS and LNA the UE, applied elementwisely to the envelope of symbols
 The nonlinear transfer functions are, modeled as a Rapp model with clipping voltage V and smoothness factor p.

PN
FO3Vip) =G ) i = (14 (F)7)




Two-Stage DNN Structure with

Unknown Nonlinearity ;

« We introduce parameterized nonlinear modules f,(-) and f,(-) to approximate f;,(-) and fr(-)
 find model parameters u and v such that f; = f;,,(-) and f,, = f.(*)
* choice of nonlinearity approximation modules: polynomial model with limited number of odd orders

* The training should also update the nonlinear module parameters w = |[u, v]
€, 0" = argmin B {Lun (X (§:2):6, fu, fv))
NeS)
. . 1 . .
with Lynk (XS 0, fu, fv) — 5 Hy — v (fu (S) FX)H; + A HXH1 ;
* Online training is still applicable since the loss function satisfies the three axioms.

« Based on the loss, we designed a two-stage DNN structure for joint CE training and nonlinearity approximation

1y
X ; M OGUFD =2 nG
_ r r v 1
Input: n(fx) n‘(i ) |‘| 4 7| ngy) Loss function
received — —— i » 1 _
oilot i Isklp connectlonl [ I > 1y —v Il 1- AllE,

symbols (—— Rtk lpeletenievterkele e Bl ket === == H

\ I Re DNN-Based Nl : : : | | ]
®) Channel Estimator 1 . A
L9 nm=1] a R = Tl T o LD = Rk
I = Re(y :’] 1) A { TN e R Dy 1l —
[ evicl | = . ‘ I\. 9 O

—_— < p l/ { K, X z.ll),/ L E I - I * P

Y o h ) IOyt ‘a—': 1 2 1 1 | %
.TD 11 ¢ ) ASCHH S’ . L1 multiptier 170 =
g 1 i 3 & TG | 1l v(lrM Dl N | 1 E

— 1 \ - U= (Y -y

I~ estimated
| — I --------- I I u ----------l' ------- mml ar \__
"\ 7 Linear recovery layer ‘\ 4 output
L4 /

Stage I: DNN-Based Channel Estimator  Stage Il: Nonlinearity Approximation Module



Simulation for Unknown

Default Simulation Setup: » Linear OMP performs badly as it ignores nonlinearity

 N=64 antennas, pilot length M=20, Vi,, = V.., =V = 1.5, Pty = Py =
1

« fully connected NN with 2 hidden layers, each with 640 neurons

* Nonlinearity module is odd order polynomial raised to the 5-th power

» Modified OMP compensates the nonlinear distortion with
true transfer functions. Promisingly the two-stage DNN
outperforms modified OMP.

*  Online training scheme: 10000 steps of weight updates (I.e., 10000 > The online DNN (with known transfers) achieves slightly
pilot measurements) at SNR = 30 dB. better performance than two-stage DNN, meaning that the
nonlinear transfer functions are accurately approximated by
10° 1 MMSE the two-stage structure
/ linear OMA > Offline DNN is trained on “pilot-channel”’ labels generated
_E \  from the V = 2.5 amplifiers but applied to the system with
= V = 1.5 nonlinearity. The offline-DNN is prone to nonlinear
'E model mismatch problem as well.
o | - I - _ _
= 10 ] offline DNN, assumes V=2.5 —— ideal linear PA
o . e rh 1.75: actual nonlinear PA
E but applled toV=1.5 ampllflers ® estimated Tx nonlinear PA
v-E mOdIfIEd OMP 1.50 4 X estimated Rx nonlinear PA
Ly / ! Verlfy the apprommat.ed 2125
= | NN T nonlinear transfers with | =
i :\\ two—stage DNN‘""' ______________________________________ - g 1.00
---------- 7 the actual ones 5
/ | 8 0.75-
1072 1 : = ° 0.50 -
] Online DNN (true transfer functions) ' :
0.25
0] o 10 15 20 25 30
SNR — TG00 o025 o050 o075 100 135 150 175

Fig. 12: CE NMSE versus SNR compared with baselines fiveurE s rrasiibie
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Multi-User Massive MIMO

Massive MU-MIMO system:
 One BS with N antennas, K single-antenna UEs
 The received signal at the k-th user: Yk = Shy + ny

* To leverage multiplexing gain of MIMO,
 UEs need to know the CSIR
 BS needs to know the CSIT

 The CSITs for the BS need to be feedback by the UEs,
which induces large feedback overhead in massive MIMO

Conventional CS-based solution
* h, are estimated at the K UEs and are fed back to the BS.

« This approach will not be able to explore the common
sparsity structure in MU channels, because user k only
have pilot measurement for hy

We should explore the common sparsity structure

In the MU-MIMO channels to reduce the pilot &
feedback overhead.

individual

angular supports T

local scatterer )
domain

T—_‘Dr UE1 channel
X1 ‘

o UE 1

commaon s
supports .' c

chared common
scatterer

MNMassive

MIMO BS ZETE\

)

Fig. 14: Massive MU-MIMO system with structural common sparsity
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Fig. 15: Conventional channel estimation and CSIT feedback in MU-MIMO system.



Common Sparsity in MU-MIMO

Common Sparsity in MU-MIMO Channels:

Individual Sparsity: the channel of each UE has a sparse

representation in angular domain: h,, = Fx,;, each x;, Is
sparse.

Partial Common Sparsity among all users: The UEs share

some common scatterers, thus the channels of different
UEs share a partial common support set.

Verification of Common Sparsity via COST2100 channel
model

2.6-GHz NLoS semi-urban environments with closely
spaced users randomly clustered in a 50 m x 50 m target
area

20 users randomly clustered in a 5 m x 5 m square

A support is identified with significant raise-over-thermal
(20 dB)

Common support is identified if it iIs a support for all users

s et R

-J ﬂﬂ—'l—'l I"‘ -.“! ﬂlrl:l'l:ttl‘ "rlrlrlrl:l'- il ] I.IJ;

Support of
=Rl =l i) R Le] Bs) 1) 5| 2] 2 Rl | T ] 41| 421 | S R | | ] ] A ) A (= =] L=l pe] =] L= E=] Re] =) =] (=] =] =] b= Relle] L] o] bo] b=] b g Rel i)
user 2

Lol Y I FE T S - s P Bl I B - NS R TE = FE =t T gl ST - T T e - C e B ] u o = [=-pr=] &= (1] == —
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Fig. 16: Channel supports of two random users. We can see there is large
portion of overlap in the supports of the two users.
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Fig 17: Histogram of ratio of common sparsity level. Typical common sparsity

ratio lies in the range of 30% ~ 50%.
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Exploiting Common Sparsity

Distributed MU-MIMO Channel Estimation Scheme [8]: This approach can facilitate CSIT at the BS because

.. . the CSITs are jointly recovered at the BS.
1. The BS broadcast compressed training pilots to UES _ ) Y
Problems:
2. tqheeBUSEs feedback compressed pilot measurements 1o 1. The CSIR estimation of the UE cannot be achieved
because the compressed pilot measurement
3. The BS recovers the channels via joint-orthogonal observed locally will NOT be sufficient for individual
matching pursuit algorithm exploiting common sparsity UE to estimate the per-link h,,
2. The J-OMP algorithm is iterative and has high
S y1 = Sh; + ny computational complexity = channel estimation
 messiementss | cannot be done in real time for massive MIMO
oo ’ \\\\feedback N4 y]_ UE 1
{Y1' Y1, "'JYK} * . .
% feedback y, Desire for Online DNN of the MU Case
Joint ::i y UE 2
[Ectham;,e' } i‘; - 2 We also need an online DNN-based solution for MU-
K e
T <P Pact), : case such that
(hy, by, ..., Dy ) - Channel inferencing is fast
Yk UE K * Online training that utilizes MU structural sparsity
* Facilitate both CSIT and CSIR estimation at the
[8] X. Rao and V. K. N. Lau, "Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User Same tlme

Massive MIMO Systems," in IEEE Transactions on Signal Processing, 2014.



Enabling CSIT and CSIR Estimation

[ \ Vi — Shk + Ny,
iBroadcasted piIotL p—
'measurements S|
- ‘ ‘. KY1T e
{Y1: YJII ey YK} \ feedbackyr —______ A4l
S So
<
o | Stage | | A
Stagell > h., <«
: l 2 2
< P
Stage Il | .
1 °
CSIT inferencing h,h,, .. hy = - UE K N )
at the BS A Yk Stagell [— h, <
--------- | > K
T LT e b /'
Periodically Broadcast p and Stage Il weights £,

To achieve the purpose of CSIT and CSIR estimation:
* We propose a two-tier DNN structure

* Stage-l jointly estimate the common supports p from pilot feedbacks {y;, y4, ..., Y } of all UEs

Stage-Il estimates the channel h;, for each user utilizing P and y;, (all users share the same Stage-Il weights)
* For CSIT estimation:

« The BS implements forward propagation of Stage-l and Stage-Il to estimate the CSIT of all users
* For CSIR estimation (federated learning):

* The BS will periodically broadcast p and Stage-lIl DNN weights to the UEs.
The UEs perform CSIR inferencing locally based on downloaded Stage-Il weights and its own pilot measurements.




Detalled Two-Tier DNN Structure

Stage-II Stage-l : DNN-based common support estimator (with weigths Q)

DNN
angular domain [ - ' K
~ ongulor domain Input: pilot feedbacks from all users {yy }r-1
e 5 | mon [ W T P+ Output: common support p € [0, 1]
kJk=1 I
plo feedbacks * The activation function of the output layer Is the sigmoid function, that
£ 0) outputs a soft probability.
online loss function - . . . . . .
t * Training of Stage-| is a multi-class multi-label classification problem
BCELoss(p,P) :
using the BCE loss | N
Forward inferencing of Stage-1 DNN ——— Forward inferencing of Stage-Il DNN BCE (ﬁa p) _ N Z (pn 10g D + (1 . pn) log (1 . ﬁn))
Backward training of Stage-llDNN ~ ------ » Backward training of Stage-Il DNN n=1
/ \ Stage-ll : DNN-based Channel Estimator (with weights Q,)
Challenge: Design of loss « Input: pilot feedbacks and p estimated by Stage-I

* Enable online training

o » Output: channel of all users {&; }5-;
* Leverages individual channel

« A common support counter calculates p based on channel estimates

sparsit . - .
P Y : and use It as training label for Stage-I1 training
* Leverages the partial common
\ sparse structure among users / « Stage-ll DNN trgining IS trying to find a set of weights that minimizes
some loss function for CE

L (DNNg, ([yx;P]);6)




Online Loss Design Exploiting

Common Sparsity

« Similarly, for online training of the channel estimator, we need an online loss function that (|) does not
need true channel, (i) leverages the common support p and (iil) measures the error with the true channel.

* We proposed a@hted Il-@ regularized loss function utilizing the common support estimate p.
1

v T L0 =y - ARl AR,
1%/l = D wn |2nl
=1

with w, =1—p,, 0 ={y,p,S,F}
 The main idea: set w,, smaller if x,, Is more likely to be large, such that x,, Is less penalized.

lLemma

(Consistency of the Weighted h-Norm Regularized Loss Function) Assume the angular
domain channel x is s-sparse. Suppose the overall measurement matrix A = SF satisfies
the RIP property and the RIP constant 6.s satisfies

t—d
fe S \/t—d+92 (6)

for some t > d. Let the regularizer be chosen as \ = o,/+/s. Then, the minimizer x* of
the loss function, satisfies

(7)

I = xllp < ome (B) = 20 (31“(1 + 65) + (rB2 + u\/E))
2 = On = 20,

(u—682) (081 + /r)

w.h.p. at least 1 — e /% with r > M and u =/t — d, where 0 and d are constants
depending on accuracy of p, while 31 and (3> are some constants depending on O;s.




Federated Online Training

Vi = Shk +nk

____________________ . CSIR inferencing at

Broadcast pilot P Stage || |_> . each UE locally
measurements S Vi age hy

-
S~ -

- S o
e _——a=>s

Stage I
|

—
Ty, .

CSIT inferencing at

At the UEs:

1. Feedback received pilot
measurements

2. Periodically download p
and Stage-Il weights

3. CSIR inferencing

G At the BS:

BS = 1. Broadcasts pilots
(implements 00 | 2. Update Stage-l and
DNN training one step one step Stage-ll weights. online
and CSIT —>! update —>| update 3. CSIT inferencing
estimation) T v 4. Periodically broadcast p

Random initialization

i and Stage-Il weights



Simulation

local clustering

scatterer for UE1l_— ) Defau It Set“ N g :

~LJ ve » BS equipped with ULA of N = 64 antennas, K = 20
UEs with single antenna, pilot length M = 40.

20-subpaths with
angular spread of 8°

- - [

.. shared common
scatterer for all UEs

 3GPP SCM channel model: 28 GHz carrier frequency
system in an urban macro propagation environment.
C = 2 clusters of scatterers, each has 20 significant
(] paths with angular spread of 8. One of the cluster is
UE a common scatterer.

’ 2
local clustering i .
scatterer for UE2 E * DNN structure: both stages has 2 hidden layers with
Fig. 18: MU-MIMO channel for a K = 2 user case. There is a common 100~300 neurons eaCh

clustering scatterer for all users and one local scatterer for each user.

Computation Time Saving — — — -~

number of received » One step of channel inferencing is about 1000X faster than

. . 20 40 100 _ :
pilot feedbacks per time slot JOMP [8] algorithm, and 300X faster than MMSE algorithm.

Tow-tier DNN
one step of CE inferencing Uil 2Uoims| 2o s MU0 Rod8ms » The fast inferencing enables real-time CE for MU-massive
JOMP 122.994 mg236.92 ms| 654.08 ms MIMO.
MMSE 46.236 ms| 94.83 ms | 234.47 ms - _ . .

Fig. 19: CPU time of proposed solution compared with various baselines
under different numbers of pilot feedbacks in each time slot.



NMSE of channel estimation

10~

10~2 4

1073 -

Proposed two-tier DNN

0 2 4 6 8 10 12 14
Common sparsity level s,

Fig. 20: CE NMSE v.s. common sparsity level at
SNR = 30 dB and total sparsity = 14.

> In this experiment, the channel of each user has 14
support, and we vary the number of common support
of each user

» The CE quality of the two-tier DNN gets better as the
number of common supports increases, illustrating

| the benefits of more common support (i.e., hidden

correlation among all users)

» In the case of no common support (s, = 0), the two-
tier DNN has similar performance with the per-link
online DNN




CSIT & CSIR Tracking

local clustering
scatterer for UE1
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Fig 21. Time-varying propagation environment for a K = 2 system.

® Propagation environment is static for the first 1000 steps. Then, a new
common scatterer starts moving towards the BS and stops at 5000-th step.

® Offline DNN fixed weights after offline training & apply online, while online

DNN continuously updates its weights based on real-time measurements.

® BS performs DNN training & CSIT estimation. It also broadcast Stage-l|

DNN weights to the UEs every T=1000 steps, so that the UEs can perform
CSIR estimation

Traihing .“Inl | : I : .
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of dfffline Df\]\l 9 ‘1
=l | !
10° - I Offline-training-comp!
4 | and a new common
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h’l‘d CSIT estimation of 1
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Fig 22. CSIT & CSIR Tracking of the two tire DNN compared with offline DNN.

» Offline DNN performance degrade with time as its
weights cannot adapt to the propagation environment

» Online DNN at the BS can keep track of CSIT channel
model.

» At the UE, the CSIR estimation error converges to that of
the CSIT estimation after about 5 Stage-Il weights
broadcasting periods.




Conclusions




Conclusions

Online Training Framework for massive MIMO CE:

* [Online Loss Function] propose 3 axioms for a legitimate online loss function - the channel estimator
can be trained online based on real-time pilot measurements without need for channel labels.

« example online loss functions that satisfy the 3 axioms and
 exploiting channel sparsity for reduced pilot overhead

* [Online Training Algorithm] enables simultaneous training and inferencing.
* the DNN welights can adapt to the time-varying channel model online (tracking ability)
* robust to various model mismatches (channel model & nonlinear model & array geometry)
* enjoying faster channel inferencing
» e-analysis of online training algorithm

« [Extension to MU-MIMOQ] enables CSIT & CSIR estimation with reduced pilot feedbacks
 two-tier DNN structure exploiting partial common sparsity

» federated online training enables UEs to utilize the common sparsity structure learned at the BS for CSIR
estimation.
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